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Synchrotron Production of Photons by a Two-
Body System

Miroslav Pardy1

Received September 20, 1999

The power spectrum of the synchrotron radiation generated by the motion of a
two-body charged system in an accelerator is derived in the framework of the
Schwinger source theory. The final formula can be used to verify the Lorentz
length contraction of the two-body system moving in the synchrotron.

The production of photons by the circular motion of charged particles
in an accelerator is one of the most interesting problems in the classical and
quantum electrodynamics.

In this paper we are interested in the photon production initiated by
circular motion and a two-body charged system. This process specifies the
synergic synchrotron Čerenkov radiation, which was calculated in source
theory two decades ago by Schwinger et al. (1976). We will follow also
Pardy (1994a). The synergic process includes the effect of the medium, which
is represented by the phenomenological index of refraction n, and it is well
known that this phenomenological constant depends on the external mag-
netic field.

We will investigate, first, how the original Schwinger et al. spectral
formula of the synergic synchrotron Čerenkov radiation of a charged particle
moving in a medium is modified if we consider a two-body system. Then,
we will treat this process in vacuum. This problem is an analogue of the
linear problem solved recently by the author (Pardy, 1997) also in source
theory. We will show that the original spectral formula of the synergic synchro-
tron-Čerenkov radiation is modulated by the function cos2(av/2v), where a
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is the distance between charges, v is their velocity, and v is the frequency
of the synergic radiation produced by the system.

Source theory (Schwinger, 1970, 1973; Dittrich, 1978) was initially
constructed for a description of high-energy particle physics experiments. It
was found that the original formulation simplifies calculations in electrody-
namics and gravity, where the interactions are mediated by the photon and
graviton, respectively. It simplifies particularly calculations with radiative
corrections (Dittrich, 1978; Pardy, 1994b).

The basic formula of the Schwinger source theory is the so-called vacuum
to vacuum amplitude:

^0+.02& 5 e(i/")W (1)

where, for the case of an electromagnetic field in the medium, the action W
is given by

W 5
1

2c2 # (dx)(dx8)Jm(x)D1mn (x 2 x8)Jn(x8) (2)

where

Dmn
1 5

m
c

[gmn 1 (1 2 n22)bmbn] D+(x 2 x8) (3)

and bm [ (1, 0), Jm [ (cr, J ) is the conserved current, m is the magnetic
permeability of the medium, P is the dielectric constant of the medium, and
n 5 !Pm is the index of refraction of the medium. The function D+ is
defined as follows (Schwinger et al., 1976):

D+(x 2 x8) 5
i

4p2c #
`

0

dv
sin(nv/c).x 2 x8.

.x 2 x8.
e2iv.t2t8. (4)

The probability of the persistence of the vacuum follows from the
vacuum amplitude (1) in the following form:

.^0+.02&.2 5 e2(2/")ImW (5)

where Im W is the basis for the definition of the spectral function P(v, t)
as follows:

2
2
"

Im W 5
d

2 # dt dv
P(v, t)

"v
(6)
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Now, if we insert Eq. (2) into Eq. (6), we get, after extracting P(v, t),
the following general expression for this spectral function:

P(v, t) 5 2
v

4p2

m
n2 # dx dx8 dt8 Fsin(nv/c) .x 2 x8.

.x 2 x8. G
3 cos[v(t 2 t8)] [r(x, t)r(x8, t8) 2

n2

c2 J(x, t)? J(x8, t8)] (7)

Now, we will apply the formula (7) to the two-body system with the
same charged particles in order to get its synergic synchrotron-Čerenkov
radiation. The synchrotron radiation is produced by a particle of charge e
moving in a uniform circular motion with velocity v in the plane perpendicular
to the direction of the constant magnetic field H (chosen to be in the 1z
direction).

On the other hand, the Čerenkov electromagnetic radiation is generated
by a fast-moving charged particle in a medium when its speed is faster
than the speed of light in this medium. This radiation was first observed
experimentally by Čerenkov (1936) and theoretically interpreted by Tamm
and Frank (1937) in the framework of classical electrodynamics. A source-
theoretic description of this effect was given by Schwinger et al. (1976) in the
zero-temperature regime, and the classical spectral formula was generalized to
the finite-temperature situation in electrodynamics and gravity in the frame-
work of the source theory by Pardy (1989, 1995).

In electrodynamics one usually considers synchrotron radiation produced
by a uniformly moving charge with constant orbital velocity. Here we consider
the system of two equal charges e with constant mutual distance a moving
with orbital velocity v in the accelerator. For the sake of generality we consider
also that a dielectric medium is present. So we write for the charge density
r and for the current density J of the two-body system

r(x, t) 5 ed(x 2 x1(t)) 1 ed(x 2 x2(t)) (8)

and

J(x, t) 5 ev1(t)d(x 2 x1(t)) 1 ev2(t)d (x 2 x2(t)) (9)

with

x1(t) 5 x(t) 5 R(i cos(v0t) 1 j sin (v0t)) (10)

x2(t) 5 R(i cos (v0t 1 dw) 1 j sin(v0t 1 dw)) 5 x1t 1
dw
v0
2;

dw 5
a
R

(11)
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We will suppose for simplicity that the distance between the particles
forming the two-body system is very small in comparison with the diameter
R of the circular accelerator, which means that the velocities of both particles
are approximately the same, or v1(t) ' v2(t) 5 v(t), where (H 5 .H., E 5
energy of a particle)

v(t) 5 dx/dt, v0 5 v/R, R 5 bE/eH, b 5 v/c, v 5 .v.

(12)

After insertion of Eqs. (8) and (9) into Eq. (7), and after some mathemati-
cal operations, we get

P(v, t) 5 2
v

4p2

m
n2 e2 #

`

2`

dt8 cos(t 2 t8) F1 2
v(t) ? v(t8)

c2 n2G
3 Hsin(nv/c).x1(t) 2 x1(t8).

.x1(t) 2 x1(t8).
1

sin(nv/c).x1(t) 2 x2(t8).
.x1(t) 2 x2(t8).

1
sin(nv/c).x2(t) 2 x1(t8).

.x2(t) 2 x1(t8).
1

sin(nv/c).x2(t) 2 x2(t8).
.x2(t) 2 x2(t8).

J (13)

Using t8 5 t 1 t, we get

x1(t) 2 x1(t8) 5 x(t) 2 x(t 1 t) 5
d

A (14)

x1(t) 2 x2(t8) 5 x(t) 2 x1t 1 t 1
dw
v0
2 5

d

B (15)

x2(t) 2 x1(t8) 5 x1t 1
dw
v0
2 2 x(t 1 t) 5

d

C (16)

x2(t) 2 x2(t8) 5 x1t 1
dw
v0
2 2 x1t 1 t 1

dw
v0
2 5

d

D (17)

Using the geometrical representation of vectors xi (t), we get

.A. 5 [R2 1 R2 2 2RR cos(v0t)]1/2 5 2RZsin1v0t
2 2Z (18)

.B. 5 2RZsin1v0t 1 dw
2 2Z (19)

.C. 5 2RZsin1v0t 2 dw
2 2Z (20)
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.D. 5 2RZsin 1v0t
2 2Z (21)

Using

v(t ? v(t 1 t) 5 v2
0R2 cos v0t (22)

and relations (18)–(21), we get, with v 5 v0R,

P(v, t)

5 2
v

4p2

m
n2 e2 #

`

2`

dt cos vtF1 2
n2

c2 v2 cos v0tG
3 Hsin[(2Rnv/c) sin (v0t/2)]

2R sin(v0t/2)
1

sin[(2Rnv/c) sin((v0t 1 dw)/2)]
2R sin ((v0t 1 dw)/2)

1
sin[(2Rnv/c) sin ((v0t 2 dw)/2)]

2R sin((v0t 2 dw)/2)
1

sin[(2Rnv/c) sin(v0t/2)]
2R sin(v0t/2) J (23)

Introducing the new variable T by the relation

v0t 1 ai 5 v0T (24)

for every integral in Eq. (23), where

ai 5 0, dw, 2dw, 0 (25)

we get P(v, t) in the following form:

P(v, t) 5 2
v

4p2

e2

2R
m
n2 #

`

2`

dT

3 o
4

i51
cos(vT 2

v
v0

ai) F1 2
c2

n2 v2 cos(v0T 2 ai)G
3 Hsin[2Rnv/c) sin(v0T/2)]

sin (v0T/2) J (26)

The last formula can be written in the more compact form

P(v, t) 5 2
v

4p2

m
n2

e2

2R o
4

i51
HP(i)

1 2
n2

c2 v2 P(i)
2 J (27)
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where

P(i)
1 5 J(i)

1a cos
v
v0

ai 1 J(i)
1b sin

v
v0

ai (28)

and

P(i)
2 5 J(i)

2A cos ai cos
v
v0

ai

1 J(i)
2B cos ai sin

v
v0

ai 1 J(i)
2C sin ai cos

v
v0

ai

1 J(i)
2D sin ai sin

v
v0

ai (29)

where

J(i)
1a 5 #

`

2`

dT cos vT Hsin[2Rnv/c) sin(v0T/2)]
sin (v0T/2) J (30)

J(i)
1b 5 #

`

2`

dT sinvT Hsin[2Rnv/c) sin(v0T/2)]
sin (v0T/2) J (31)

J(i)
2A 5 #

`

2`

dT cos v0T cos vT Hsin[(2Rnv/c) sin(v0T/2)]
sin (v0T/2) J (32)

J(i)
2B 5 #

`

2`

dT cos v0T sin vT Hsin[(2Rnv/c) sin(v0T/2)]
sin (v0T/2) J (33)

J(i)
2C 5 #

`

2`

dT sin v0T cos vT Hsin[(2Rnv/c) sin(v0T/2)]
sin (v0T/2) J (34)

J(i)
2D 5 #

`

2`

dT sin v0T sin vT Hsin[(2Rnv/c) sin(v0T/2)]
sin (v0T/2) J (35)

Using

v0T 5 w 1 2pl, w P (2p, p), l 5 0, 61, 62, . . . (36)

we can transform the T-integral into the sum of the telescopic integrals
according to the scheme
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#
`

2`

dT → 1
v0

o
`

2`
#

p

2p

dw (37)

Using the fact that for the odd functions f(w) and g(l), the following
relations are valid,

#
p

2p

f(w) dw 5 0; o
`

l2`
g(l) 5 0 (38)

we can write

J(i)
1a 5

1
v0

o
l
#

p

2p

dw Hcos
v
v0

w cos 2pl
v
v0
J Hsin[(2Rnv/c) sin(w/2)]

sin(w/2) J (39)

J(i)
1b 5 0 (40)

For integrals with indices A, B, C, D we get

J(i)
2A 5

1
v0

o
l
#

p

2p

dw cos w Hcos
v
v0

w cos 2pl
v
v0
J

3 Hsin[(2Rnv/c) sin (w/2)]
sin(w/2) J (41)

J(i)
2B 5 J(i)

2C 5 0 (42)

J(i)
2D 5

1
v0

o
l
#

p

2p

dw sin w Hsin
v
v0

w cos2pl
v
v0
J

3 Hsin[(2Rnv/c) sin(w/2)]
sin(w/2) J (43)

Using the Poisson theorem,

o
`

k52`
cos 2p

v
v0

k 5 o
`

k52`
v0d(v 2 v0k) (44)

the definition of the Bessel functions J2l, and their corresponding derivation
and integral

1
2p #

p

2p

dw cos 1z sin
w
22 cos lw 5 J2l(z) (45)

1
2p #

p

2p

dw sin 1z sin
w
22 cos lw 5 2J82l(z) (46)
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1
2p #

p

2p

dw
sin(z sin(w/2))

sin(w/2)
cos lw 5 #

z

0

J2l(x) dx (47)

we get, with (a ¿ R)

sin ai sin
v
v0

ai ' 0 (48)

and with the definition of the partial power spectrum Pl ,

P(v) 5 o
`

l51
d(v 2 lv0)Pl (49)

the following final form of the partial power spectrum generated by motion
of a two-charge system moving in the cyclotron:

Pl(v, t) 5 cos2 1av
2v2 e2

pn2

vmv0

v 12n2b2J82l (2lnb)

2 (1 2 n2b2) #
2lnb

0

dx J2l(x)2 (50)

Our goal is to apply the last formula to the situation when the medium
of the accelerator is in fact a vacuum. In this case we can put m 5 1 and
n 5 1 in the last formula and so we have

Pl 5 cos2 1av
2v2 e2

p
vv0

v 12b2J82l(2lb) 2 (1 2 b2) #
2lb

0

dx J2l(x)2 (51)

Using the approximative formulas

J82l (2lb) , 1

!3

1
p 1 3

2lc
2

2/3

K2/3(l/lc), l À 1 (52)

#
2lb

0

J2l( y) dy , 1

!3

1
p #

`

l/lc

K1/3( y) dy, l À 1 (53)

with (Schwinger et al., 1976)

lc 5
3
2

(1 2 b2)23/2 (54)

substituting Eqs. (52) and (53) into Eq. (51), respecting the high-energy
situation for the high-energy particles where (1 2 b2) → 0, and using the
recurrence relation
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K82/3 5 2
1
2

(K1/3 1 K5/3) (55)

and definition of the function k(j)

k(j) 5 j#
`

j

K5/3( y) dy, j 5 l/lc (56)

we get the power spectrum of an electron–electron pair as follows:

P(v) 5 cos21av
2v2 ve2

p2R !p
6 13

2l2
2/3

j1/6 e2j; l 5
v
v0

(57)

where we used the idea that the discrete spectrum parametrized by the number
l is effectively continuous for l À 1. In such a case we have

P(v) 5 P(l5v/v0) 1 1
v0
2 (58)

Formula (57) is analogous to the formula derived in Pardy (1997) for
the linear motion of a two-charge system emitting Čerenkov radiation.

The radiative corrections obviously influence the spectrum (Schwinger,
1970; and Pardy, 1994b). Determination of this phenomenon forms a special
problem of accelerator physics.

Use of large accelerators, for instance, Grenoble, DESY, or CERN,
should make possible experimental verification of the derived formulas
involving also the Lorentz contraction. Instead of two electrons we can
consider, say, two bunches with 1010 electrons in each bunch of volume 300
mm 3 40 mm 3 0.01 m, with a rest distance l 5 1 m between them. The
distance between the two bunches is the relativistic length a and it can be
determined by the synchrotron spectrum derived here.

The results of the Lorentz contraction measurement obtained from the
synchrotron radiation spectrum in vacuum (n 5 1, m 5 1) should be identical
with the results of a measurement obtained from a spectrum generated by
linear uniform particle motion in a medium because the interference of light
in vacuum does not differ from the interference of light emitted by the
Čerenkov effect in a medium.
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